Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(26)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38522101

RESUMO

Selective area growth by hydride vapor phase epitaxy of GaN nanostructures with different shapes was investigated versus the deposition conditions including temperature and ammonia flux. Growth experiments were carried out on templates of GaN on sapphire masked with SiNx. We discuss two occurrences related to axial and radial growth of GaN nanowires. A growth suppression phenomenon was observed under certain conditions, which was circumvented by applying the cyclic growth mode. A theoretical model involving inhibiting species was developed to understand the growth suppression phenomenon on the masked substrates. Various morphologies of GaN nanocrystals were obtained by controlling the competition between the growth and blocking mechanisms as a function of the temperature and vapor phase composition. The optimal growth conditions were revealed for obtaining regular arrays of ∼5µm long GaN nanowires.

2.
Nanoscale Adv ; 5(11): 2994-3004, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260482

RESUMO

Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, i.e., crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale. The whole process, from the NW growth to the decomposition, is conducted in situ without breaking vacuum to maintain pristine crystal surfaces. Radial decomposition occurs much faster for ZB- compared to WZ-phase NWs, due to the development of nano-faceted sidewall morphology and sublimation along the entire NW length. In contrast, WZ NWs form single-faceted, vertical sidewalls with decomposition proceeding only via step-flow mechanism from the NW tip. Concurrent axial decomposition is generally faster than the radial process, but is significantly faster (∼4-fold) in WZ phase, due to the absence of well-defined facets at the tip of WZ NWs. The results further show quantitatively the influence of the NW diameter on the sublimation and step-flow decomposition velocities elucidating several effects that can be exploited to fine-tune the NW dimensions.

3.
Nanoscale ; 14(35): 12722-12735, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35997103

RESUMO

With their unique structural, optical and electrical properties, III-V nanowires (NWs) are an extremely attractive option for the direct growth of III-Vs on Si for tandem solar cell applications. Here, we introduce a core-shell GaAs/GaInP NW solar cell grown by molecular beam epitaxy on a patterned Si substrate, and we present an in-depth investigation of its optoelectronic properties and limitations. We report a power conversion efficiency of almost 3.7%, and a state-of-the-art open-circuit voltage (VOC) for a NW array solar cell on Si of 0.65 V. We also present the first quantification of the quasi-Fermi level splitting in NW array solar cells using hyperspectral photoluminescence measurements. A value of 0.84 eV is obtained at 1 sun (1.01 eV at 81 suns), which is significantly higher than qVOC. It indicates NWs with a better intrinsic optoelectronic quality than what could be expected from TEM images or deduced from electrical measurements. Optical and electronic simulations provide insights into the main absorption and electrical losses, and guidelines to design and fabricate higher-efficiency devices. It suggests that improvements at the n-type contact (GaInP/ITO) are key to unlocking the potential of next generation NW solar cells.

4.
ACS Nano ; 16(3): 4397-4407, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276038

RESUMO

The growth of ZnTe nanowires and ZnTe-CdTe nanowire heterostructures is studied by in situ transmission electron microscopy. We describe the shape and the change of shape of the solid gold nanoparticle during vapor-solid-solid growth. We show the balance between one monolayer and two monolayer steps, which characterizes the vapor-liquid-solid and vapor-solid-solid growth modes of ZnTe. We discuss the likely role of the mismatch strain and lattice coincidence between gold and ZnTe on the predominance of two monolayer steps during vapor-solid-solid growth and on the subsequent self-regulation of the step dynamics. Finally, the formation of an interface between CdTe and ZnTe is described.

5.
Small ; 18(5): e2101890, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761502

RESUMO

Breakthroughs in cutting-edge research fields such as hetero-integration of materials and the development of quantum devices are heavily bound to the control of misfit strain during heteroepitaxy. While remote epitaxy offers one of the most intriguing avenues, demonstrations of functional hybrid heterostructures are hardly possible without a deep understanding of the nucleation and growth kinetics of 3D crystals on graphene and their mutual interactions. Here, the kinetics of such processes from real-time observations of germanium (Ge) growth on freestanding single layer graphene (SLG) using in-situ transmission electron microscopy are unraveled. This powerful technique provides a unique opportunity to observe new and yet unexplored phenomena, which are not accessible to the standard ex situ characterizations. Through direct observations, remote interactions are elucidated between Ge crystals through the graphene layer in double heterostructures of Ge/graphene/Ge. Notably, the data show real-time evidence of vertical Ge atoms diffusion through the graphene layer. This phenomenon is attributed to the remote interactions of Ge atoms through the graphene lattice, due to its interatomic interaction transparency. Additionally, key mechanisms governing nucleation and initial growth in graphene were systematically determined. These findings enlighten the growth mechanism of graphene and provide a new pathway for disruptive hybrid semiconductor-graphene devices.

6.
Nanotechnology ; 32(8): 085705, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33171444

RESUMO

We analyse the electrical and optical properties of single GaN nanowire p-n junctions grown by plasma-assisted molecular-beam epitaxy using magnesium and silicon as doping sources. Different junction architectures having either a n-base or a p-base structure are compared using optical and electrical analyses. Electron-beam induced current (EBIC) microscopy of the nanowires shows that in the case of a n-base p-n junction the parasitic radial growth enhanced by the magnesium (Mg) doping leads to a mixed axial-radial behaviour with strong wire-to-wire fluctuations of the junction position and shape. By reverting the doping order p-base p-n junctions with a purely axial well-defined structure and a low wire-to-wire dispersion are achieved. The good optical quality of the top n nanowire segment grown on a p-doped stem is preserved. A hole concentration in the p-doped segment exceeding 1018 cm-3 was extracted from EBIC mapping and photoluminescence analyses. This high concentration is reached without degrading the nanowire morphology.

7.
Nanoscale ; 12(35): 18240-18248, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32856654

RESUMO

We report the first investigation of indium (In) as the vapor-liquid-solid catalyst of GaP and InGaAs nanowires by molecular beam epitaxy. A strong asymmetry in the Ga distribution between the liquid and solid phases allows one to obtain pure GaP and In0.2Ga0.8As nanowires while the liquid catalyst remains nearly pure In. This uncommon In catalyst presents several advantages. First, the nanowire morphology can be tuned by changing the In flux alone, independently of the Ga and group V fluxes. Second, the nanowire crystal structure always remains cubic during steady state growth and catalyst crystallization, despite the low contact angle of the liquid droplet measured after growth (95°). Third, the vertical yield of In-catalyzed GaP and (InGa)As nanowire arrays on patterned silicon substrates increases dramatically. Combining straight sidewalls, controllable morphologies and a high vertical yield, In-catalysts provide an alternative to the standard Au or Ga alloys for the bottom-up growth of large scale homogeneous arrays of (InGa)As or GaP nanowires.

8.
Nano Lett ; 20(3): 1669-1675, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32027145

RESUMO

Crystal phase switching between the zincblende and wurtzite structures in III-V nanowires is crucial from the fundamental viewpoint as well as for electronic and photonic applications of crystal phase heterostructures. Here, the results of in situ monitoring of self-catalyzed vapor-liquid-solid growth of GaAs nanowires by molecular beam epitaxy inside a transmission electron microscope are presented. It is demonstrated that the occurrence of the zincblende or wurtzite phase in self-catalyzed nanowires is determined by the sole parameter, the droplet contact angle, which can be finely tuned by changing the group III and V fluxes. The zincblende phase forms at small (<100°) and large (>125°) contact angles, whereas pure wurtzite phase is observed for intermediate contact angles. Wurtzite nanowires are restricted by vertical sidewalls, whereas zincblende nanowires taper or develop the truncated edge at their top. These findings are explained within a dedicated model for the surface energetics. These results give a clear route for the crystal phase control in Au-free III-V nanowires. On a more general note, in situ growth monitoring with atomic resolution and at the technological-relevant growth rates is shown to be a powerful tool for the fine-tuning of material properties at the nanoscale.

9.
Nanotechnology ; 31(14): 145708, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846937

RESUMO

Axial p-n and p-i-n junctions in GaAs0.7P0.3 nanowires are demonstrated and analyzed using electron beam induced current microscopy. Organized self-catalyzed nanowire arrays are grown by molecular beam epitaxy on nanopatterned Si substrates. The nanowires are doped using Be and Si impurities to obtain p- and n-type conductivity, respectively. A method to determine the doping type by analyzing the induced current in the vicinity of a Schottky contact is proposed. It is demonstrated that for the applied growth conditions using Ga as a catalyst, Si doping induces an n-type conductivity contrary to the GaAs self-catalyzed nanowire case, where Si was reported to yield a p-type doping. Active axial nanowire p-n junctions having a homogeneous composition along the axis are synthesized and the carrier concentration and minority carrier diffusion lengths are measured. To the best of our knowledge, this is the first report of axial p-n junctions in self-catalyzed GaAsP nanowires.

10.
J Phys Chem Lett ; 10(17): 5082-5089, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31403800

RESUMO

The growth of catalytic liquid-metal nanodroplets on flat substrates is essential for many technological applications. However, the detailed nucleation and growth dynamics of these nanodroplets remain unclear. Here, using in situ transmission electron microscopy (TEM) imaging, we track in real time the growth of individual Ga nanodroplets from a beam of Ga vapor. We show that the nucleation and growth are driven by thermally activated surface diffusion of Ga adatoms, with the diffusion activation energy of ED = 95 ± 10 meV on a SiNx surface. More importantly, our analysis shows that Ga dimers serve as the critical nucleation clusters and that the nanodroplet growth follows a power-law of the form R(t) ∝ e-ED/kBT(t - t0)1/2. These insights into the growth dynamics of metallic nanodroplets are essential for tailoring their size and density for their application in self-catalyzed growth of nanomaterials.

11.
Nanotechnology ; 30(32): 324002, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30995632

RESUMO

The surface morphology of III-V semiconductor nanowires (NWs) protected by an arsenic cap and subsequently evaporated in ultrahigh vacuum is investigated with scanning tunneling microscopy and scanning transmission electron microscopy. We show that the changes of the surface morphology as a function of the NW composition and the nature of the seed particles are intimately related to the formation and reaction of surface point defects. Langmuir evaporation close to the congruent evaporation temperature causes the formation of vacancies which nucleate and form vacancy islands on {110} sidewalls of self-catalyzed InAs NWs. However, for annealing temperatures much smaller than the congruent temperature, a new phenomenon occurs: group III vacancies form and are filled by excess As atoms, leading to surface AsGa antisites. The resulting Ga adatoms nucleate with excess As atoms at the NW edges, producing monoatomic-step islands on the {110} sidewalls of GaAs NWs. Finally, when gold atoms diffuse from the seed particle onto the {110} sidewalls during evaporation of the protective As cap, Langmuir evaporation does not take place, leaving the sidewalls of InAsSb NWs atomically flat.

12.
Nanotechnology ; 30(21): 214006, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30736025

RESUMO

In this work, nanoscale electrical and optical properties of n-GaN nanowires (NWs) containing GaN/AlN multiple quantum discs (MQDs) grown by molecular beam epitaxy are investigated by means of single wire I(V) measurements, electron beam induced current microscopy (EBIC) and cathodoluminescence (CL) analysis. A strong impact of non-intentional AlN and GaN shells on the electrical resistance of individual NWs is put in evidence. The EBIC mappings reveal the presence of two regions with internal electric fields oriented in opposite directions: one in the MQDs region and the other in the adjacent bottom GaN segment. These fields are found to co-exist under zero bias, while under an external bias either one or the other dominates the current collection. In this way EBIC maps allow us to locate the current generation within the wire under different bias conditions and to give the first direct evidence of carrier collection from AlN/GaN MQDs. The NWs have been further investigated by photoluminescence and CL analyses at low temperature. CL mappings show that the near band edge emission of GaN from the bottom part of the NW is blue-shifted due to the presence of the radial shell. In addition, it is observed that CL intensity drops in the central part of the NWs. Comparing the CL and EBIC maps, this decrease of the luminescence intensity is attributed to an efficient charge splitting effect due to the electric fields in the MQDs region and in the GaN base.

13.
Phys Rev Lett ; 121(16): 166101, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387660

RESUMO

Crystal growth often proceeds by atomic step flow. When the surface area available for growth is limited, the nucleation and progression of the steps can be affected. This issue is particularly relevant to the formation of nanocrystals. We examine the case of Au-catalyzed GaAs nanowires, which we grow in a transmission electron microscope. Our in situ observations show that atomic layers nucleate at the periphery of the interface between the nanowire and the catalyst droplet. From this starting location, the atomic step flows within a restricted area of hexagonal shape. At specific partial coverages, the monolayer configuration changes abruptly. A simple model based on the geometry of the system and its edge energies explains these observations. In particular, we observe an inversion of the step curvature which reveals that the effective energy per unit length of monolayer edge is much lower at the interface periphery than inside the catalyst droplet.

14.
Nano Lett ; 18(2): 701-708, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29257888

RESUMO

The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.

15.
Nano Lett ; 17(11): 6667-6675, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035545

RESUMO

We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 1017 to 1 × 1018 cm-3. These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

16.
Phys Rev Lett ; 119(9): 097701, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949581

RESUMO

We present a study of Andreev quantum dots fabricated with small-diameter (30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobility edge separating localized states from delocalized states. The transition to the insulating phase is identified by a drop in the amplitude and width of the excited levels and is found to have remarkable consequences on the spectrum of superconducting subgap resonances. While at deeply localized levels only quasiparticle cotunneling is observed, for slightly delocalized levels Shiba bound states form and a parity-changing quantum phase transition is identified by a crossing of the bound states at zero energy. Finally, in the metallic regime, single Andreev resonances are observed.

17.
Opt Express ; 25(10): 11760-11766, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788735

RESUMO

A continuous-wave 1.6 µm-emitting InAs Quantum Dash-based Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser on InP is demonstrated. The laser emits in the L-band with a stable linear polarization. Up to 163 mW output power has been obtained in multi-transverse mode regime. Single-frequency regime is achieved in the 1609-1622 nm range, with an estimated linewidth of 22 kHz in a 49 mm cavity, and a maximum emitted power of 7.9 mW at 1611 nm. In such conditions, the laser exhibits a Class-A behavior, with a cut-off frequency of 800 kHz and a shot-noise floor of -158 dB/Hz for 2 mA of detected photocurrent.

18.
Nanoscale ; 9(13): 4610-4619, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28323294

RESUMO

The performances of 1D-nanostructure based nanogenerators are governed by the ability of nanostructures to efficiently convert mechanical deformation into electrical energy, and by the efficiency with which this piezo-generated energy is harvested. In this paper, we highlight the crucial influence of the GaN nanowire-metal Schottky nanocontact on the energy harvesting efficiency. Three different metals, p-type doped diamond, PtSi and Pt/Ir, have been investigated. By using an atomic force microscope equipped with a Resiscope module, we demonstrate that the harvesting of piezo-generated energy is up to 2.4 times more efficient using a platinum-based Schottky nanocontact compared to a doped diamond-based nanocontact. In light of Schottky contact characteristics, we evidence that the conventional description of the Schottky diode cannot be applied. The contact is governed by its nanometer size. This specific behaviour induces notably a lowering of the Schottky barrier height, which gives rise to an enhanced conduction. We especially demonstrate that this effective thinning is directly correlated with the improvement of the energy harvesting efficiency, which is much pronounced for Pt-based Schottky diodes. These results constitute a building block to the overall improvement of NW-based nanogenerator devices.

19.
Nano Lett ; 16(8): 4895-902, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414518

RESUMO

Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures.

20.
Nano Lett ; 16(3): 1917-24, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26840359

RESUMO

The growth of III-III-V axial heterostructures in nanowires via the vapor-liquid-solid method is deemed to be unfavorable because of the high solubility of group III elements in the catalyst droplet. In this work, we study the formation by molecular beam epitaxy of self-catalyzed GaAs nanowires with AlxGa1-xAs insertions. The composition profiles are extracted and analyzed with monolayer resolution using high-angle annular dark-field scanning transmission electron microscopy. We test successfully several growth procedures to sharpen the heterointerfaces. For a given nanowire geometry, prefilling the droplet with Al atoms is shown to be the most efficient way to reduce the width of the GaAs/AlxGa1-xAs interface. Using the thermodynamic data available in the literature, we develop numerical and analytical models of the composition profiles, showing very good agreement with experiments. These models suggest that atomically sharp interfaces are attainable for catalyst droplets of small volumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...